Epigenetic Vaccine

The first introduction to psychology usually comes in the kind of biology classes. Many biology students already come into class with at least basic understanding of psychology. They know that their genes determine how their bodies work, how they physically function and, to a certain extent, how they act or what illnesses they may develop. But hardly any of these students have a clear understanding of what exactly DNA is, where it’s found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of evolution, the genes passed from one generation to the next only need to survive. Genes are merely instructions for doing things. People, as all living things, are programmed through thousands of years of natural selection to engage in behavior that is survival oriented. The basis for this programming is that the expression of certain genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, grandparents, or other kin will determine such behaviour.

In terms of understanding what is happening genetically, we are still in the era of molecular biology. Within this frame, genes are simply packets of information carrying instructions. This is how humans, plants and animals have been evolving for centuries. Nevertheless, in the last 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics provides a new lens through which we can see the relationships between behaviour and genes.

The molecular basis for behaviors and human memory is actually quite simple – it’s all about the epigenome. The Epigenome is a cellular memory storage that determines whether or not a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behavior exists in all of us, but in varying quantities. Most of the variations come from the variation in the copies of genes within the cellular memory storage of the individual. The copy of the gene which determines the behavior is called the epigome. It’s this particular copy that we call the epigenome.

The significance of the epigenome in psychology and its relationship to individual differences was shown in a landmark study on twins. For years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior that existed between people who had identical twins but whose traits were quite different. This study provided the first evidence of the significance of the epigenome in human behaviour and its link to abnormal behavioral disorders such as autism.

Even though the significance of the Epigenome in psychology has been established, many in the emotional area are hesitant to accept its potential as a substantial factor in mental illness. 1 reason for this is it is difficult to define a real genetic sequence or locus that causes a behavioral disorder. Another issue is that there are simply too many genetic differences between individuals to use a single DNA sequence to determine mental illness. Finally, although the research on the Epigenome has been promising, more work has to be done to find out the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it can be used as a basis for analyzing other complex diseases that have complex genetic elements.

If you’re interested in learning more about Epigenetics and how it applies to psychology, I highly recommend that you follow the links below. My website discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the environmental causes of disease, but I have also been involved in studying the relationship between Epigenetics and Autism. My future articles will also talk about diseases of the brain which can be affected by Epigenetics.