Oprah Winfrey Exhibit

The first introduction to psychology normally comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They understand that their genes determine how their bodies work, how they function and, to a certain extent, how they act or what illnesses they may develop. But hardly any of these students have a clear understanding of what exactly DNA is, where it is found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of evolution, the genes passed from one generation to the next just have to survive. Genes are nothing more than instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to engage in behavior that’s survival oriented. The basis for this programming is that the expression of certain genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, grandparents, or other kin will determine such behavior.

Concerning understanding what is going on genetically, we are still in the age of molecular biology. In this framework, genes are simply packets of information carrying directions. This is how humans, plants and animals have been evolving for centuries. However, in the last 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics offers a new lens through which we could view the relationships between behaviour and genes.

The molecular basis for behaviors and human memory is in fact quite simple – it’s all about the epigenome. The Epigenome is a mobile memory storage which determines whether or not a behavior is going to be expressed or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying quantities. Most of the variations come from the variation in the copies of genes within the mobile memory storage of the person. The copy of the gene that determines the behaviour is called the epigome. It is this specific copy that we call the epigenome.

The importance of the epigenome in psychology and its relationship to individual differences was shown in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior which existed between people who had identical twins but whose traits were quite different. This study provided the first evidence of the importance of the epigenome in human behavior and its link to abnormal behavioral disorders such as autism.

Although the significance of this Epigenome in psychology has been established, many in the emotional area are hesitant to accept its potential as a substantial element in mental illness. 1 reason for this is it is hard to define an actual genetic sequence or locus that leads to a behavioral disorder. Another problem is that there are just too many genetic differences between people to use a single DNA sequence to determine mental illness. Finally, although the study on the Epigenome has been promising, more work needs to be done to find out the role that genetics play in complex diseases like schizophrenia. If this finding holds true, it may be utilised as a foundation for studying other complicated diseases that have complicated genetic elements.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I highly recommend that you follow the links below. My website discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can also hear me speak on my epigenetics and autism blog. My research into Epigenetics is centered on understanding the ecological causes of disease, but I also have been involved in studying the relationship between Epigenetics and Autism. My future articles will also discuss diseases of the mind which can be affected by Epigenetics.