Oprah Winfrey On Reading Books

The first introduction to psychology normally comes in the form of biology classes. Many biology students already come into class with at least basic understanding of psychology. They understand that their genes determine how their bodies work, how they physically function and, to a certain degree, how they behave or what illnesses they may develop. But very few of these students have a clear comprehension of what exactly DNA is, where it is found in the body, why it causes problems, and how it can be manipulated or altered.

In the case of development, the genes passed from one generation to the next only need to survive. Genes are merely instructions for doing things. Humans, as all living things, are programmed through thousands of years of natural selection to engage in behavior that is survival oriented. The foundation for this programming is that the expression of certain genes that cause specific traits, such as aggressiveness, violence or sexuality. In the case of psychology, the genes that are passed on to us through our parents, siblings, or other kin will determine such behaviour.

Concerning understanding what is going on genetically, we are still in the era of molecular biology. Within this frame, genes are just packets of information carrying directions. This is how humans, plants and animals have been evolving for centuries. Nevertheless, in the last 50 years or so, a revolution in the field of psychology has happened known as molecular biology or genomics. Genomics provides a new lens through which we can see the relationships between behavior and genes.

The molecular basis for behaviors and human memory is actually quite simple – it’s all about the epigenome. The Epigenome is a cellular memory storage that determines whether a behavior is going to be voiced or not. Like all memory storage systems, it contains information that is “programmed” in advance by the genome.

What we now know is that the genetic material that determines behaviour exists in all of us, but in varying amounts. The majority of the variations come from the variation in the copies of genes within the mobile memory storage of the person. The copy of the gene that determines the behaviour is called the epigome. It is this particular copy that we call the epigenome.

The significance of the epigenome in psychology and its relationship to individual differences has been revealed in a landmark study on twins. For many years, autism research was based upon research on twins. However, it was found that there was substantial heritability (hitability) to behavior that existed between individuals who had identical twins but whose traits were very different. This study provided the first evidence of the importance of the epigenome in human behaviour and its connection to abnormal behavioral disorders like autism.

Even though the significance of this Epigenome in psychology has been established, many in the psychological area are reluctant to accept its potential as a significant factor in mental illness. One reason for this is it is hard to define an actual genetic sequence or locus that causes a behavioral disorder. Another problem is that there are simply too many genetic differences between individuals to use a single DNA sequence to determine mental illness. Finally, even though the study on the Epigenome has been promising, more work has to be done to determine the role that genetics play in complex diseases such as schizophrenia. If this finding holds true, it may be used as a foundation for analyzing other complicated diseases that have complicated genetic elements.

If you’re interested in knowing more about Epigenetics and how it applies to psychology, I strongly advise that you follow the links below. My site discusses the exciting new technologies that are available now to better understand how Epigenetics affects behavior and the susceptibility to disease. You can even hear me speak on my epigenetics and autism blog. My research into Epigenetics is focused on understanding the environmental causes of disease, but I also have been involved in analyzing the relationship between Epigenetics and Autism. My future posts will also discuss diseases of the brain that can be impacted by Epigenetics.